
Pattern Classification with Memristive Crossbar Circuits

Dmitri B. Strukov
Department of Electrical and Computer Engineering Department

UC Santa Barbara
Santa Barbara, CA, USA, 93106-9560

Abstract: Neuromorphic pattern classifiers were

implemented, for the first time, using transistor-free

integrated crossbar circuits with bilayer metal-oxide

memristors. 10×6- and 10×8-crosspoint neuromorphic

networks were trained in-situ using a Manhattan-Rule

algorithm to separate a set of 3×3 binary images: into 3

classes using the batch-mode training, and into 4 classes

using the stochastic-mode training, respectively. Simulation

of much larger, multilayer neural network classifiers based

on such technology has shown that their fidelity may be on

a par with the state-of-the-art results.

Keywords: Memristor; resistive switching; RRAM;

artificial neural networks; perceptron; pattern classification;

deep learning; convolutional neural network networks.

Introduction
Deep-learning convolutional neural networks (DLCNN),

which are essentially multilayer perceptrons (MLP) with

restricted connectivity between some layers (Fig. 1a), have

been demonstrated to achieve some of the best

classification performances on a variety of benchmark tasks

[1]. The major challenge in building fast and energy-

efficient networks of this type in hardware is performing

efficient vector-by-matrix multiplication, which in turn

requires compact implementation of synaptic weights [2].

CrossNet circuits have emerged as an efficient solution to

these challenges [2]. In such a network, neural cell bodies

are mimicked with analog CMOS circuits, which

communicate via passive crossbars with integrated tunable

resistive devices (“memristors”) [3-6], playing the role of

synapses [7-12] (Figs. 1b-e). Main goals of this work were

to demonstrate the first neural networks with integrated

crossbar circuits, and evaluate possible performance of

larger classifiers based on this emerging technology.

Experimental Results
A 12×12 crossbar with 200-nm lines separated by 400-nm

gaps (Fig. 2a), with a Pt/Al2O3/TiO2-x/Ti/Pt memristor at

each crosspoint, was fabricated using a standard lift-off

patterning. The Al2O3/TiO2-x stack was deposited by

reactive sputtering, with titanium oxide stoichiometry

controlled precisely via the oxygen flow control. The

thickness and stoichiometry were optimized to achieve low

forming voltages (<2 V) and highly nonlinear I-V curves

with a ~10 ratio of current values at the switching voltage

(~1.5 V) and at a half of it (Fig. 2b). The most outstanding

feature of such memristors is their low variability (Fig. 2c);

together with nonlinear I-V and low forming voltages it has

enabled forming of most of the devices in crossbar array.

Other important characteristics are the ~100 ON/OFF

current ratio at ~0.1 V, a switching endurance of at least

5,000 cycles, an estimated retention of at least 10 years at

room temperature, and operation currents between ~100 nA

and ~100 μA [9, 10]. Using short (e.g., 500 μS) pulses

makes both set and reset switching processes fairly

continuous, enabling gradual tuning of device conductance

with an at least 5-bit precision [10] even using a very

simple (suboptimal) feedback algorithm [11]. Such

precision is already acceptable for some neural network

applications [2, 12].

During classifier's operation (Figs. 1e, 3a, 4a), the vector-

by-matrix multiplication of the input signals (represented

with voltages) by weights (represented by memristor

conductances) is performed on the physical level, in analog

domain, using Ohm’s and Kirchhoff’s laws, by applying

the input voltages to crossbar's row lines and reading out

the currents flowing into virtually grounded column lines

(Fig. 1e, 4a). The training was performed in-situ in both the

batch and stochastic modes, using the Manhattan-Rule

algorithm (Fig. 3) [13]. This rule is convenient for crossbar

CMOS neurons

crossbar
nanowire synapses(a)

CMOS

circuits

crossbar

with

memristive

devices

differential pair:

A A A A

VR

(b) (c) (d) (e)
 ijijij GGW

x1

x2
y

W1

2

neuron
synapses

W

CMOS neuron

f∞y

memristor
synapses

V=RI

R

G∞W

I=∑jGijVj

V ∞ x

Figure 1. Neuromorphic network implementation with CrossNet circuits [2]: (a) A graph representation of a multilayer perceptron;

(b) a cartoon of a hybrid CMOS/memristor (CMOL) integrated circuit; (c) analog implementation of the dot-product, (f) its mapping
on the hybrid circuit, and (e) the implementation of vector-by-matrix multiplication using a memristive crossbar. (It shows that if
negative weight values are required, a synapse may be implemented as a pair of memristors.)

311
Distribution A: Approved for public release; distribution unlimited.

circuit implementation, due to the use of only the sign

information of the conventional Delta-Rule algorithm's

result. The advantage of stochastic training is that the

weight update for the whole crossbar (of any size) may be

performed in just four steps by applying pulses in parallel

to rows and columns of the crossbar (Fig. 4b) [12].

Namely, the weights are grouped into four sets, each

corresponding to a particular combinations of signs of V(n)

and δ(n), and the weight in each group are updated in

parallel. On the contrary, in the batch mode the weights in

different columns (or rows) have to be updated sequentially

(Fig. 4c), so that the update time grows linearly with

crossbar size. Additionally, the batch mode training may

come with a large area overhead when implemented on-

chip, due to the need of computing and storing intermediate

results for the weight update [17].

2 μm

(a) (c)

(d)

(e)

-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0

-600

-500

-400

-300

-200

-100

0

100

200

300

C
u

rr
e
n

t
(

A
)

Voltage (V)

Reset

Set
Form

SiO2/Si

Pt (60 nm)

TiO2-x (30 nm)

Ti (15 nm)

Al2O3 (4 nm)

Ta (5 nm)

Pt (60 nm)

VW-

VR
VW+

Voltage (V)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

300

200

100

0

-100

-200

-300

-400

-500

-600

C
u
rr

e
n
t

(μ
A

)

-1.5 -1.0 -0.5 0.0 0.5 1.0
0

5

10

15

C
ou

nt
s

Threshold Voltage (V)

1.7 1.8 1.9 2.0 2.1
0

10

20

30

40

C
ou

nt
s

Forming voltage (V)

0.3 0.4 0.5 0.6
0

5

10

15

C
ou

nt
s

Conductance @0.1V (S)

Reset Set

Switching threshold voltage (V)

Forming voltage (V)

Conductance @ 0.1V (μS)

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

15

10

5

0

40

30

20

10

0

15

10

5

0-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1.7 1.8 1.9 2.0 2.1

0.3 0.4 0.5 0.6

(b)

Figure 2. Crossbar circuit with integrated Al2O3/TiO2-x resistive switching devices: (a) micrograph of a 12×12-crosspoint crossbar;
(b) typical quasi-dc I-V curves of memristor forming and switching, with the inset showing the device stack; and histograms of: (c)

conductances before forming, (d) forming voltages, and (e) effective switching threshold voltages. (The threshold is conditionally
defined as the point at which device’s resistance is changed by at least 2 kΩ upon application of a 500-μs voltage pulse train with
a slowly increasing amplitude, starting from high/low conductive state for reset/set transitions.)

calculate

fi (n) =

calculate

(n) =

calculate
set

n = 1

Δij = 0

desired class fi
(g)(n)

last

pattern

?

no

yes
update

weights

Vj(n)

n = n +1next

epoch

end

of

epoch

no

last

pattern

?

yesupdate

weights

n = n +1

stochastic

batch

J

j

jijVW
1

 iItanh

 nVnn jiij

)(

)(

nII
i

i

g

ii
dI

df
nfnfn

Stochastic Delta Rule:

N

n

ijij nW
1

sgn

Batch Manhattan Rule:

 nnW ijij sgn)(

Stochastic Manhattan Rule:

 nnW ijij)(

(a) (b)

training set:

initializeWij

Figure 3. In-situ training of a single-layer perceptron classifier: (a) flow chart of one epoch for batch- and stochastic-mode training

algorithms. Gray-shaded boxes show the steps implemented inside the crossbar, while those with solid black borders denote the
only steps required for performing the feedforward (classification) operation.

(a)

bias

pattern

(“z”)

V=

I1
+ I1

- I2
+ I2

- I3
+ I3

-

+VR

-VR

-VR

+VR

+VR

+VR

-VR

-VR

+VR

-VR

(b)

0 0 0 00

0

0

0

0

0

0 0 0 00

-VW
+/2

0
0

0

0

0

-VW
+/2

-VW
+/2

-VW
+/2

-VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

-VW
+/2

+VW
+/2

step 1:
set G+

step 2:
reset G+

step 3:
reset G-

step 4:
set G-

sgn[ΔW]=

sgn[δi(n)Vj (n)] 0

0

0

0

0

0 00

0

0
0

0

0

0 00

-VW
+/2

-VW
+/2

-VW
+/2

-VW
+/2

-VW
+/2

+VW
+/2 +VW

+/2 +VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

+VW
+/2

-VW
+/2 -VW

+/2 -VW
+/2

sgn[ΔW]=

(c)

Figure 4. Physical-level description of the classification experiment: (a) example of operation of classifier using a 10×6 fragment

of the crossbar; example of weight adjustment for (b) stochastic and (c) batch training for a specific error matrix. Panels (b) and
(c) show the voltages only for first two steps. The read and write biases were always VR = 0.1 V and VW

± = ±1.3 V, respectively
(Fig. 2b).

312

Generally, device-to-device variations of the switching

threshold present a significant challenge for the in-situ

training, because exponential switching dynamics [6, 11]

amplifies even slight threshold variations. Additionally, the

change in conductance depends on the initial conductance

of the device. In this context, the fact that we have been

able to achieve successful convergence for both the batch

and stochastic in-situ training, even despite substantial

device-to-device variations in switching dynamics, is

highly encouraging (Fig. 5). The batch-mode training gave

more stable convergence, while the update dynamics for

that stochastic training was very close to that in the

software-implemented network [10].

0 100 200
0
2
4
6
8

10
12

 Training set

 Test set

#
 m

is
s
c
la

s
s
.
p
a

tt
.

Iteration #

0 10 20 30 40 50 60
0

20

40

60

80

100

 Epoch

 Test set

 Learning set

26% misclassification

100

80

60

40

20

0

12

10

8

6

4

2

0

0 10 20 30 40 50 60

0 100 200
Iteration #

Epoch #

Training set

Test set

26%

Training set

Test set

#
 m

is
c
la

s
s
if
ie

d
 p

a
tt
e
rn

s

(a)

(b)

n

v

z

(e)

z

v

n

x
training set

test
set

x

i i
c c
v v

(d)(c)

Figure 5. Results of pattern classification experiments: the

convergence of network’s output in the process of in-situ
training for the (a) batch and (b) stochastic training modes;
(c-e): the training and test images used for (c) batch and (d,
e) stochastic training experiments. For the batch training,
one epoch is the input of 30 patterns, while for stochastic
training, one iteration is the application of one pattern. The
batch mode (d) training / (e) test images are formed by
flipping one pixel / two pixels of the “ideal patterns” shown
with the solid border.

Simulations Results
In another part of this work, an accurate, data-verified

model of adaptation of our memristors [14] was used to

simulate the performance of pattern classifiers, based on a

large-scale fully connected MLP and DLCNN, on several

representative benchmarks [15], using both in-situ and ex-

situ training [16, 17]. Similarly to the experimental results,

the classification performance was worse for the stochastic

Manhattan-Rule training (Table 1a). However, a simple

“variable-amplitude” variation of the training scheme [16,

17] allows an implementation of the more efficient Delta-

Rule algorithm (Fig. 3b), which dramatically improves the

stochastic-mode fidelity and achieves state-of-the-art

performance for the batch training (Table 1a-b). In such

variable-amplitude scheme, write voltages proportional to

log[V(n)] and log[δ(n)], of specific polarity, are applied to

the corresponding lines of the crossbar. Since the change of

device conductance is roughly exponential in the applied

voltage, this procedure results in weight update

proportional to the product of δV, thus implementing the

Delta Rule directly in the crossbar, without the need of its

calculation in external hardware. The simulation results

also show that the in-situ training is inherently robust to

various network defects (Fig. 6), and that an 8-bit weight

import at ex-situ training is sufficient to avoid classification

fidelity degradation [17].
M

is
c
la

s
s
if
ic

a
ti
o
n
 r

a
te

Ratio of stuck devices (%)
0 10 20 30 40 50 60 70 80 90 100

300-hidden-

neuron MLP,

variable-

amplitude for in-

situ training

100

10-1

10-2

10-3

Figure 6. MNIST dataset classification fidelity of a MLP as a

function of the fraction of stuck-on-open or stuck-on-close
devices, for several training approaches.

Discussion and Summary
We have experimentally demonstrated an artificial neural

network using memristors integrated into a dense,

transistor-free crossbar circuit. We believe that this

demonstration is a significant step toward analog-hardware

implementation of practical artificial neural networks. The

simulation of such scaled-up networks, using a

quantitatively verified model of our memristors, has shown

that their performance can be competitive to the state-of-

the-art software implementations. Moreover, recent

experiments [18] with similar but smaller (so far, discrete)

313

memristors give hope that the metal-oxide memristor

networks may be scaled down to at least 30-nm devices.

According to theoretical estimates [2], such networks

would enable CrossNets with an areal density higher than

that of the human cerebral cortex, operating at much higher

speed and with comparable energy efficiency.

Acknowledgements

This work was supported by AFOSR under MURI grant

FA9550-12-1-0038, by DARPA under contract HR0011-

13-C-0051UPSIDE via BAE Systems, Inc., and by the

DENSO CORP., Japan. The author would like to

acknowledge contribution by M. Prezioso, B. Hoskins, G.

Adam, F. Merrikh-Bayat, I. Kataeva, and K.K. Likharev.

References
1. Krizhevsky, A., I. Sutskever, and G.E. Hinton,

“ImageNet Classification with Deep Convolutional

Neural Networks,” in: Proceedings of NIPS’12, Lake

Tahoe, NV, Dec. 2012, pp. 1097-1105.

2. Likharev, K.K., “CrossNets: Neuromorphic Hybrid

CMOS/Nanoelectronic Networks,” Science of

Advanced Materials, Vol. 3, no.3, pp. 322–331, May

2011.

3. Waser, R., R. Dittman, G. Staikov, and K. Szot,

“Redox-Based Resistive Switching Memories,”

Advanced Materials, Vol. 21, pp. 2632–2663, 2009.

4. Wong, H.S.P. et al., “Metal-Oxide RRAM,”

Proceedings of IEEE, Vol. 100, pp. 1951-1970, 2012.

5. Lu, W., D.S. Jeong, M. Kozicki, and R. Waser,

“Electrochemical Metallization Cells – Blending

Nanoionics into Nanoelectronics,” MRS Bulletin, Vol.

37, no. 2, pp. 124-130, 2012.

6. Yang, J.J., D.B. Strukov, and D.R. Stewart,

“Memristive Devices for Computing”, Nature

Nanotechnology, Vol. 8, pp. 13-24, Jan. 2013.

7. Yu, S. et al., “A Neuromorphic Visual System Using

RRAM Synaptic Devices with Sub-pJ Energy and

Tolerance to Variability: Experimental

Characterization and Large-Scale Modeling,” IEDM

Technical Digest, p. 10.4.1, 2012.

8. Park, S. et al., “RRAM-Based Synapse for

Neuromorphic System with Pattern Recognition

Function,” IEDM Technical Digest, p. 10.2.1, 2012.

9. Prezioso, M., F. Merrikh-Bayat, B.D. Hoskins, G.C.

Adam, K.K., Likharev, “Training and Operation of an

Integrated Neuromorphic Network Based on Metal-

Oxide Memristors,” Nature, Vol. 521, pp. 61-64, May

2015.

10. Prezioso, M., I. Kataeva, F. Merrikh-Bayat, B.

Hoskins, G. Adam, T. Sota, K. Likharev, and D.

Strukov, “Modeling and Implementation of Firing-

Rate Neuromorphic-Network Classifiers with Bilayer

Pt/Al2O3/TiO2-x/Pt memristors”, accepted to IEDM'15,

Dec. 2015.

11. Alibart, F., L. Gao, B. Hoskins and D.B. Strukov,

“High-Precision Tuning of State for Memristive

Devices by Adaptable Variation-Tolerant Algorithm,”

Nanotechnology, Vol. 23, art. 075201, 2012.

12. Alibart, F., A. Zamanidoost, and D.B. Strukov,

“Pattern Classification by Memristive Crossbar

Circuits with Ex-situ and In-situ Training,” Nature

Communications, Vol. 4, p. 2072, 2013.

13. Schiffmann, W., M. Joost, and R. Werner,

“Optimization of the Backpropagation Algorithm for

Training Multilayer Perceptrons,” Technical Report,

University of Koblenz, 1994.

14. Merrikh Bayat, F., B. Hoskins, and D.B. Strukov,

“Phenomenological Modeling of Memristive

Devices,” Applied Physics A, Vol. 118, pp. 770-786,

2015.

15. Ciresan, D., U. Meier, and J. Schmidhuber, “Multi-

Column Deep Neural Networks for Image

Classification,” Proceedings of CVPR’12, Providence,

RI, June 2012, pp. 3642-3649.

16. Kataeva, I., F. Merrikh Bayat, E. Zamanidoost, and

D.B. Strukov, “Efficient Training Algorithms for

Neural Networks Based on Memristive Crossbar

Circuits”, Proceedings of IJCNN'15, Killarney,

Ireland, July 2015, pp. 1-8.

17. Kataeva, I., T. Sota, T. Rojanaarpa, F. Merrikh-Bayat

and D. Strukov, “Efficient Hardware-Compatible

Training Algorithms for Neural Networks Based on

Memristive Circuits”, in preparation, Jan. 2016.

18. Govoreanu, B. et al., “Vacancy-Modulated Conductive

Oxide Resistive RAM (VMCORRAM),” IEDM

Technical Digest, 10.2, p. 10.2.1, 2013.

Table 1. Classification fidelity for (a) 300-hidden-neuron MLP network tested on the MNIST benchmark, and (b) DLCNN, with

architectures similar to those in [15], tested on three indicated benchmarks. 500 patterns per batch were used for batch training.

Data
set

Software
Xbar

in-situ (var. ampl.)
Xbar

ex-situ 2%
Xbar

ex-situ 0.2%
best average best average best average best average

MNIST 0.40 0.47±0.05 0.4 0.48±0.024 0.61 0.89±0.22 0.41 0.42±0.01
GTSRB 1.36 1.53±0.18 1.26 1.56±0.27 1.42 1.56±01 1.46 1.47±0.01

CIFAR10 15.63 15.91±0.2215.67 15.87±0.22 19.77 20.29±0.43 15.5 15.8±0.01

Training
mode

Software
Xbar in-situ Xbar ex-situ

2% importManhattan Rule Var. ampl.
best average best average best average best average

Batch - - 1.98 2.06±0.09 1.47 1.62±0.07 - -

Stochastic 1.57 1.75±0.07 19.26 20.16±1.3 4.06 4.31±0.331.54 1.62±0.04

(b)(a)

314

